↳ ITRS
↳ ITRStoIDPProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
f(TRUE, x, y) → fNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
fNat(TRUE, x, y) → f(>@z(x, y), x, round(+@z(y, 1@z)))
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
if(FALSE, x0, x1)
if(TRUE, x0, x1)
f(TRUE, x0, x1)
fNat(TRUE, x0, x1)
round(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
f(TRUE, x, y) → fNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
fNat(TRUE, x, y) → f(>@z(x, y), x, round(+@z(y, 1@z)))
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
(0) -> (3), if ((x[0] →* x[3])∧(round(+@z(y[0], 1@z)) →* y[3])∧(>@z(x[0], y[0]) →* TRUE))
(2) -> (1), if ((+@z(y[2], 1@z) →* x[1]))
(3) -> (0), if ((x[3] →* x[0])∧(y[3] →* y[0])∧(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)) →* TRUE))
(3) -> (2), if ((x[3] →* x[2])∧(y[3] →* y[2])∧(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)) →* TRUE))
if(FALSE, x0, x1)
if(TRUE, x0, x1)
f(TRUE, x0, x1)
fNat(TRUE, x0, x1)
round(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
(0) -> (3), if ((x[0] →* x[3])∧(round(+@z(y[0], 1@z)) →* y[3])∧(>@z(x[0], y[0]) →* TRUE))
(2) -> (1), if ((+@z(y[2], 1@z) →* x[1]))
(3) -> (0), if ((x[3] →* x[0])∧(y[3] →* y[0])∧(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)) →* TRUE))
(3) -> (2), if ((x[3] →* x[2])∧(y[3] →* y[2])∧(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)) →* TRUE))
if(FALSE, x0, x1)
if(TRUE, x0, x1)
f(TRUE, x0, x1)
fNat(TRUE, x0, x1)
round(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
(3) -> (0), if ((x[3] →* x[0])∧(y[3] →* y[0])∧(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)) →* TRUE))
(0) -> (3), if ((x[0] →* x[3])∧(round(+@z(y[0], 1@z)) →* y[3])∧(>@z(x[0], y[0]) →* TRUE))
if(FALSE, x0, x1)
if(TRUE, x0, x1)
f(TRUE, x0, x1)
fNat(TRUE, x0, x1)
round(x0)
(1) (F(TRUE, x[3], y[3])≥NonInfC∧F(TRUE, x[3], y[3])≥FNAT(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)), x[3], y[3])∧(UIncreasing(FNAT(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)), x[3], y[3])), ≥))
(2) ((UIncreasing(FNAT(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(FNAT(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) ((UIncreasing(FNAT(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (0 = 0∧0 ≥ 0∧(UIncreasing(FNAT(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)), x[3], y[3])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(6) (x[0]1=x[3]1∧&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z))=TRUE∧>@z(x[0]1, y[0]1)=TRUE∧x[0]=x[3]∧round(+@z(y[0]1, 1@z))=y[3]1∧x[3]=x[0]1∧>@z(x[0], y[0])=TRUE∧round(+@z(y[0], 1@z))=y[3]∧y[3]=y[0]1 ⇒ FNAT(TRUE, x[0]1, y[0]1)≥NonInfC∧FNAT(TRUE, x[0]1, y[0]1)≥F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))∧(UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥))
(7) (>@z(x[0], y[3])=TRUE∧>@z(x[0], y[0])=TRUE∧=@z(%@z(+@z(y[0], 1@z), 2@z), 0@z)=x0∧+@z(y[0], 1@z)=x1∧+@z(+@z(y[0], 1@z), 1@z)=x2∧if(x0, x1, x2)=y[3]∧>=@z(x[0], 0@z)=TRUE∧>=@z(y[3], 0@z)=TRUE ⇒ FNAT(TRUE, x[0], y[3])≥NonInfC∧FNAT(TRUE, x[0], y[3])≥F(>@z(x[0], y[3]), x[0], round(+@z(y[3], 1@z)))∧(UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥))
(8) (x[0] + -1 + (-1)y[3] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧(-1)x0 ≥ 0∧1 + y[0] + (-1)x1 ≥ 0∧2 + y[0] + (-1)x2 ≥ 0∧x[0] ≥ 0∧y[3] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥)∧(-1)Bound + x[0] + (-1)y[3] ≥ 0∧0 ≥ 0)
(9) (x[0] + -1 + (-1)y[3] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧(-1)x0 ≥ 0∧1 + y[0] + (-1)x1 ≥ 0∧2 + y[0] + (-1)x2 ≥ 0∧x[0] ≥ 0∧y[3] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥)∧(-1)Bound + x[0] + (-1)y[3] ≥ 0∧0 ≥ 0)
(10) (1 + y[0] + (-1)x1 ≥ 0∧x[0] ≥ 0∧(-1)x0 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧2 + y[0] + (-1)x2 ≥ 0∧y[3] ≥ 0∧x[0] + -1 + (-1)y[3] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥)∧(-1)Bound + x[0] + (-1)y[3] ≥ 0∧0 ≥ 0)
(11) (1 + y[0] + (-1)x1 ≥ 0∧x[0] ≥ 0∧x0 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧2 + y[0] + (-1)x2 ≥ 0∧y[3] ≥ 0∧x[0] + -1 + (-1)y[3] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥)∧(-1)Bound + x[0] + (-1)y[3] ≥ 0∧0 ≥ 0)
(12) (1 + y[0] + (-1)x1 ≥ 0∧1 + y[3] + x[0] ≥ 0∧x0 ≥ 0∧y[3] + x[0] + (-1)y[0] ≥ 0∧2 + y[0] + (-1)x2 ≥ 0∧y[3] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥)∧1 + (-1)Bound + x[0] ≥ 0∧0 ≥ 0)
(13) (1 + y[3] + x[0] ≥ 0∧y[3] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), x[0]1, round(+@z(y[0]1, 1@z)))), ≥)∧1 + (-1)Bound + x[0] ≥ 0∧0 ≥ 0)
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(F(x1, x2, x3)) = 1 + x2 + (-1)x3
POL(>@z(x1, x2)) = 0
POL(round(x1)) = x1
POL(=@z(x1, x2)) = 0
POL(if(x1, x2, x3)) = (-1)max{(-1)x2, (-1)x3}
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
POL(FNAT(x1, x2, x3)) = 2 + (2)x1 + x2 + (-1)x3
F(TRUE, x[3], y[3]) → FNAT(&&(>=@z(x[3], 0@z), >=@z(y[3], 0@z)), x[3], y[3])
FNAT(TRUE, x[0], y[0]) → F(>@z(x[0], y[0]), x[0], round(+@z(y[0], 1@z)))
FNAT(TRUE, x[0], y[0]) → F(>@z(x[0], y[0]), x[0], round(+@z(y[0], 1@z)))
&&(FALSE, FALSE)1 ↔ FALSE1
v1 → if(FALSE, u, v)1
u1 → if(TRUE, u, v)1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))1 → round(x)1
%@z1 →
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
if(FALSE, x0, x1)
if(TRUE, x0, x1)
f(TRUE, x0, x1)
fNat(TRUE, x0, x1)
round(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
if(FALSE, x0, x1)
if(TRUE, x0, x1)
f(TRUE, x0, x1)
fNat(TRUE, x0, x1)
round(x0)